Quantum arithmetic and numerical analysis using Repeat-Until-Success circuits
نویسندگان
چکیده
We develop a method for approximate synthesis of single–qubit rotations of the form e−if(φ1,...,φk)X that is based on the Repeat-Until-Success (RUS) framework for quantum circuit synthesis. We demonstrate how smooth computable functions f can be synthesized from two basic primitives. This synthesis approach constitutes a manifestly quantum form of arithmetic that differs greatly from the approaches commonly used in quantum algorithms. The key advantage of our approach is that it requires far fewer qubits than existing approaches: as a case in point, we show that using as few as 3 ancilla qubits, one can obtain RUS circuits for approximate multiplication and reciprocals. We also analyze the costs of performing multiplication and inversion on a quantum computer using conventional approaches and find that they can require too many qubits to execute on a small quantum computer, unlike our approach.
منابع مشابه
Efficient synthesis of universal Repeat-Until-Success circuits
Recently, it was shown that Repeat-Until-Success (RUS) circuits can achieve a 2.5 times reduction in expected depth over ancilla-free techniques for single-qubit unitary decomposition. However, the previously best-known algorithm to synthesize RUS circuits requires exponential classical runtime. In this work we present an algorithm to synthesize an RUS circuit to approximate any given singlequb...
متن کاملOptimization of Quantum Cellular Automata Circuits by Genetic Algorithm
Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...
متن کاملRepeat-until-success: non-deterministic decomposition of single-qubit unitaries
We present a non-deterministic circuit decomposition technique for approximating an arbitrary single-qubit unitary to within distance that requires significantly fewer non-Clifford gates than deterministic decomposition techniques. We develop “Repeat-Until-Success” (RUS) circuits and characterize unitaries that can be exactly represented as an RUS circuit. Our RUS circuits operate by conditioni...
متن کاملOptimizing Teleportation Cost in Multi-Partition Distributed Quantum Circuits
There are many obstacles in quantum circuits implementation with large scales, so distributed quantum systems are appropriate solution for these quantum circuits. Therefore, reducing the number of quantum teleportation leads to improve the cost of implementing a quantum circuit. The minimum number of teleportations can be considered as a measure of the efficiency of distributed quantum systems....
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Quantum Information & Computation
دوره 16 شماره
صفحات -
تاریخ انتشار 2016